
leads to an attempt to use new approaches to solving the problem of deformation of a material 
with a crack. The effect of loading-cycle length on plastic-zone kinetics obtained by means 
of the dislocation model for plastic deformation described in the work agrees on the whole 
with observations in direct experiments. In addition, the closed system occurring in the 
process .of solution for intermediate results of the map for unlike dislocation density A6(r) 
and maps for the Overall dislocation density taking part in the plastic deformation process, 
and also distribution of operating residual stresses (which are distantly operating stress 
fields for an assembly of unlike dislocations) may be used in building physically equiprob- 
able dislocation models of fatigue crack growth. 

The difference in the approach suggested for studying fatigue failure from semiempiri- 
cal theories existing in linear fracture mechanics includes the following. Absence of a 
physical base in mathematical models of semiempirical theories induces mechanical engineers 
to limit themselves to one or two parameters of the number which affect crack extension rate. 
In the opposite case the number of empirical constants in resulting expressions increases 
nonlinearly. The approach described in this work makes it possible to build on the basis 
of a dislocation model a multiparameter relationship for da/dN with a limited number of em- 
pirical constants. 
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THREE-DIMENSIONAL BENDING GRAVITATIONAL OSCILLATIONS 

NEAR MOVING PRESSURE REGIONS 

A. E. Bukatov and V. V. Zharkov UDC 532.593:539.3:624.131 

Three-dimensional bending gravitational waves, excited in the near zone during the motion 
of constant pressure regions over a uniformly compressed thin elastic film, floating on the 
surface of a homogeneous ideal incompressible fluid of finite depth, are investigated within 
the linear theory. The dependence of the structure of oscillations on the velocity of the dis- 
placed pressure region~ film thickness, and magnitude of compressing force is analyzed. 

The asymptotic analysis of development of bending gravitational waves was carried out 
in [i, 2] for motion of a planar pressure front, and in [i, 3-5] for motion of an axially 
symmetric pressure region. Analysis of dynamic deflection under a lumped load in shallow 
water was carried out in [6]. 

i. Let a thin elastic uniformly compressed film float on the surface of a homogeneous 
ideal incompressible fluid of thickness H = const. A pressure region is displaced over the 
film with constant velocity v 

P = P o ] ~ l ,  Y), xl = x q- vt, v = const. ( 1 . 1 )  

We c o n s i d e r  t h e  bend ing  g r a v i t a t i o n a l  f i l m  o s c i l l a t i o n s  e x c i t e d  in  t h i s  c a s e  and t h e  f l u i d  
wave p e r t u r b a t i o n s  in  t h e  n e a r  zone  o f  t h e  p r e s s u r e  r e g i o n .  

Under t h e  a s s u m p t i o n s  o f  t h e  l i n e a r  t h e o r y  t h e  p rob lem c o n s i s t s  o f  s o l v i n g  t h e  L a p l a c e  
e q u a t i o n  

S e v a s t o p o l ' .  T r a n s l a t e d  f rom Zhurna l  P r i k l a d n o i  Mekhaniki  i T e k h n i c h e s k o i  F i z i k i ,  No. 
3, pp.  158-156 ,  May-June ,  1989. O r i g i n a l  a r t i c l e  s u b m i t t e d  F e b r u a r y  2, 1988. 
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A q) = O, - - H  < z < O, --oo < x <  oo, --oo < g <  oo ( 1 . 2 )  

with boundary 

and initial 

, t p 

% = O, z = - - H ,  ~t = %,  z = 0 
(1.3) 

~ ,  v, z, o ) =  ~@, v, 0 ) =  0 (1 .4)  

c o n d i t i o n s ,  w h e r e  D~ = D / p g ,  Q~ = Q/pg ,  • = p ~ h / p g ,  D = E h 3 / 1 2 ( 1  - ~ 2 ) ,  V2 = 3 2 / 8 x 2  + 3 2 /  
~y2, 7~ = (72)2; p is the fluid density; E, h, p~, and ~ are the normal elasticity modulus, 
the thickness, density, and Poisson coefficient of the film, and Q is the compressing force. 

Transforming to the coordinate system x~, y, z fixed in the moving pressure region, 
and applying Fourier integral transforms over the horizontal coordinates x~, y and the La- 
place transform in time t, from (1.1)-(1.4) we obtain for an axially symmetric pressure dis- 
tribution 

oo 3 ~ / 2  

~='8"-~ ] ~  J =  ; ~(r'O)e~[rRc~ 
o --hi2 

2 .1 --iAlt t --~A2t P0_0 
= AI,X~ .cA 1 e -]- ~ e , a = pg, 'r = [l (r) M (r)] ~/2, 

M = rg(t + • rg th  rH) -1 th  rH, 1 =- Dart - -  Qlr 2 + i ,  

1o -= 1"]* (r)M(r), 

A j  ~--- r u  c o s  0 -}- ~jz',  ~ j  = ( - - t ) ] ,  x 1 ~--- R cOS 7 ,  y = R s in  V, 

R ~ _ _ x  2 ~ _ g 2 ,  m ---- r cos 0, n ---- r s in  0, r 2 - - m :  + n  2 

[f*(r) is the Fourier transform of the function f(R)]. 

The integrand function ~(r, 8) has no singularities on the integration path over e for 
any r ~ 0, since the possible singularities of the separate terms, being the real roots of 
the equations A~ = 0, A~ = 0, cancel each other. Therefore, according to the Gauchy theorem, 
the original integration path along the real axis from 8 = --~/2 to 8 = 3v/2 can be deformed 
into the path L0, bypassing in the complex plane the roots 81, 2 = ~ arccos To, z o = ~/(rv) of the 
equation A l = 0 by small semicircles over which Re(iA1) > 0, and the roots 0a, 4 = ~ + arccos 
T o of the equation ~2 = 0 by semicircles, on which Re(iA2) > 0. We now rewrite J in the form 

S ---- Jo - -  SOl - -  Jo2, Jo = ~ +o (r, O) dO~ SoJ = S +oJ (r, O) dO, 
Lo L6j 

o 
aP o = ~ exp [irR cos (O - -  T)], ~o j  = 4 exp ( - -  iA~t)R 

where L01 bypasses only the points ez,2, and L02 - the points 03, 4 . Since Ji,2 tends to 
zero for t + ~ for any fixed R, it is obvious that J0 characterizes the established motion, 
whose treatment is restricted in what follows by the condition Ql < 2JD-~I, necessary for film 
stability. 

2. If v < v 0 [v 0 = ~(r0)/r0, where r 0 is the only positive root of the equation ~' = 
x/r], then L 0 coincides with the real axis segment from 8 = -4/2 to 8 = 37/2, so that in 
the given case A I ~ 0 and A2 ~ 0. The integrand function in the expression for ~ also has 
no singularities in r, which makes it possible to investigate ~ numerically. 

Let v 0 < v < ~ We represent ~ in the form 
a 

~1= /o (r) Jo dr, ~.,. = /o (r) Jo ch', ~3 = .fo (r) Jo dr 
0 r 1 r 2 
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a 

L~ L~ 
m - - 7  L C-- ]L 

i-G . 

b 
L a L 2  

E'f, . 

c L 4 

~L s 

' L  8 L 2. 

Fig. i 

(rz2 are the real roots of the equation x - rv = 0). For 0 < r < r l, r 2 < r < =, J0 has 
no singularities in 8. In this case, as well as for v < v0, let L 0 coincide with a segment 
of the real axis. Then ~l and ~3 have no singularities in r, except the edge integration 
points r I and r 2. Consequently, the integrals ~z and ~3 can be evaluated numerically. 

For r I < r < r 2 the path L 0 in the integral J0 bypasses the points 81 and 8, in the 
lower, and the points 82 and 83 in the upper half-planes. We represent ~2 in the form 

r 2 

~2 ~- ~'2 - -  r~ ~ ~; = .f ]o (r) S (Do (r, O) dO dr~ 
r I L* 

7 r2 

~o = E Jk, Jk-~ ,I So(r) ~ (1) o (r,O) dOdr 
h=l r l  Lh 

(L* is a closed contour, formed by L 0 and by the contours Lk, on which Re [irRcos (e - ~)] 
0). The choice of L* depends on the angle ~. For 0 ~ 7 < 82, 82 ~ Y ~ 83, 83 < Y ~ ~ the 
contour L* .is illustrated in Fig. la-c, respectively, where L 0 is characterized by the solid 
line, and L k by the dashed line. Following application of Cauchy's theorem, we find 

~'2 = --  2n (I 1 + I~), 

el) 1 (r) dr, 
r i 

!q~ l ( r )  dr@J* q~l(r) dr 

/o (~) 
(:I:)1'2 = T r  2 - -  T 2 

0 o = m a x  

O~<y~<n--Oo, 

n - - O o < y < ~ n ,  

f 

I [, @2(r)dr ,  O ~ . ~ y < O o ,  

r 1 

0, Oo~<~n ,  

arccos T 0. 

Here ri,2"(~) are the roots of the equation ~ = e2(r) if 0 < u < 80, and of the equation 
= 83(r) for ~ - 8 o < ~ < ~. The functions ~1,2 and I k have no singularities in r, besides 

the integrated ones at rl, r 2. 
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From the condition Re [irR cos (0 - u < 0 it follows that when the imaginary part of 

in the complex plane tends to infinity (Fig. i) we obtain J= = Ju = Js = 0. Since ~o(r, 
8) = ~0(r, ~ + 2v), and Lz and L 7 are oppositely directed, we then have J~ + J7 = 0. 

After replacing ~ = i[(~ + ~) - ~] in the integral J3 and ~ = i(~ - ~) in Js, we obtain 

r 2 

J~ q- J-5 = -- ~ (xv) -11o (r) ( u l ' +  u2) dr, 
r 1 

i do), n = l ,  2. un (r, y, R) = (-- t )n_= ch (+'~--sin g?-'~ q--- i~-- I)~ a : o ( r R  ch co) 

We transform u n to the form 

stn (rR ch to) ch co cos ? + (-- 1) n ~ = ~ ( -  1) ~ �9 [ o] 
[ ~ ;  ~o--; 7%--(-- i) ~ +o--] ~--4- (Tf ~, +--1; 75 ~ 

do). 

Hence we have, after substituting u = cosh~, 

oo 

ttn ~ 2 ( - -  1) ~ ! '  u o sin (rRu) 
- -  d u ,  Uo = u cos  y § ( - -  l )=~o  . (2.1) 

Taking into account that 

4 + (~- - ~ ) ~ - ~  -- [~ + ( -  ~ )~o  ~o+v] ~ - ( t  - +~) ~t~,z, 

we find from (2.1), by the method of undetermined coefficients, 

2 2 

, , ~+u~- -  ( 1 -  ~)-~/~ >.2 E ( -  ~)~+"+~+i~Qm. j ~)* d~, 
~=I 71=I 1 

~ *  = sin (rRu) (u 2 -- 1) -1/2 (tt -- COS Qmn) -1, 

Q ~  = ? + ( -  t)m+n arccos T o ~- [1 -~ ( - -  t)  n] 2 "  

Since = arc tg  ~7~3]/g-~-~(~:cosQmn ) Vl__cosO~n --1--c~ n and ~-/~- cosQm n = I/Isin(Qmn/2)l , 

by replacing ~u 2 - i by /27u - i' in a small g-neighborhood of the lower limit, we obtain, 
by integration by parts, 

u 0 

s i n Q ~ .  ~ f fJ*du~ ] / ' 2 ( 1  -4- cosQ,~)A(r,e)~ 
1 

A = (A1 - -  A.2) sign As, A1 ---- sin [ rR( l  q- e)] a r c t g ] / e / ( t  - -  cos Om~), 

u 0 

A 2 = rR ~ cos (rRu) arc tg  l/-(u - -  1)/(1 - -  cos Q ~ )  du, 
1 

4 = ( -  ~)~ 1 / t - g ~os:~ + ( -  IT  ~0 stn,~, ~; = i + +. 

7 
The integrals A 2 and J (D* du, and consequently also J3 + J5 = J3 can be evaluated numerical- 

u 0 

ly. Thus, the problem of determining ~ has been reduced to numerical integration of the 
expressions for r r and I k (k = i, 2, 3). 
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TABLE 1 

h ~h aN bN Ph qh 

1,06 
t,t5 
t ,46 

1,04 
t,10 
i ,30 

3,5007 
2,t822 
t,2059 

83i,52 
84,6t5 
5,5380 

--44,617 
--1t,430 
--2,2681 

oo  

integral j. qb*du can be evaluated approximately analytically, replacing (u 2 - The l)-l/2 

~0 

at the finite segments of integration paths [u0* , u1*] , [u1* , u2*], and [u2* , u3* ] by expres- 
sions of the form pk(u - ak)2 + qk(u - ak) + b k. On the segment from u3* to ~ the function 
r u -2 is replaced for i/u 2 << 1 by the first two terms of its Taylor series expansion 
in powers of i/u 2. The lengths of the integration segments and the coefficients Pk, qk, ak, 
and b k are selected in such a manner that the approximation error not exceed a given one. 

As a result of the approximation suggested we obtain 

4 
r A = A,, + A,.,, 

Uh-- 1 

A41 = ph(rR)  -2 sin (rRu)  - -  [p~(u -- ak -- 62) -~ qh](rR) -1 cos ( rRu) ,  

A42 = ( P h ~  - -  qk~h + bk) [sin 80 Ci (rR~) -}- cos 60 Si (rR~;)], 

~h = ah - -  cos Q,nn, 6o = r R  cos Qm,~, ~ = u - cos Qm=, 
oo 2 

[ r  d~ = Y, F, (0, ~ F, = [2 r + ( -  1) ~ F~] - 'A~  
/=1 

u3 

l+1 I / + l  1 
f o r  cos Qmn =/= ( - -  t) ~ and  F 1 = Ar f o r  cos Qmn = ( -  l) ~--~. H e r e ,  

. rR ! . . rR s ,  

2u~ -~(--l)l]/~ + (-- l)l SiVa sin~-~--Ci~scos 

* ( * ( - t )  z "] 
~ 4 = r R ( u 3 - - c o s O m , ) ;  ~ = r R  u3 t ~ ) .  
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If v > /gH, the equation z - rv = 0 has only one real root r = r 2. In this case, r = 
a/8~2(~2 + r besides, the lowest limit in the integrals ~2, ~2", and Jk will vanish, and 

the expressions I k acquire the form 

r 2 

.f" q)l (r) dr, 0 ~ ? ~ ~ --  0 o, 
0 

" ] 
~j(r) dr +o qh(r) dr , ~ - - 0  o < ? < ~ - 0 . ,  Z 1 --~ 

r 2 

~, 01 (r) dr, 
r 2 

.~-- 0"~<~,~<~, 

r2 

j" ~2(r)dr, 0 ~ 0 " ,  
0 

~ ~2 (r) dr, 0"< < Oo, ? 
r 1 

O, 0o~<~<~,  

where e* = arccos (g~v). The expression for 13 remains the former one. However, when 
it is calculated by using the approximation suggested, it must be kept in mind that 
A41(Uk*) - A41(Uk_1*) = 0 at the point r = 0. 

3. Numerical analysis of the perturbation was carried out for an icy film [6, 7] in 
the case of a lumped load of a 6-function type f(x l, y) = 6(xl/H)6(y/H) for E = 3"109 N'm -2, 
@l = 870 kg'm -3, @ = 103 kg'm -3, D = 0.34. The film thickness was taken to be I and 2 m, 
and the quantity QI, characterizing ice compression, was assumed equal to 0, D~-~I, 1.5 D/~I. 
The fluid depth was taken to be 103 m for v < g~-and 30 m for v > /gH. In this case, the 
value of s was assumed equal to 0.02. The coefficients Pk, qk, bk, ak of the polynomials, 
approximating the function (u 2 - i) -I/~ with an error of 1.5% on the segments [Uk_l*, Uk*], 
and the values of Uk* (k = I, 2, 3) were selected from Table i. 

The results of numerical calculations are shown in Figs. 2-5, where the isoline devia- 
tions from the unperturbed level are given in millimeters. For v < ~(Figs. 2-4) the load 
weight is 1.6"106 N, and for v > ~(Fig. 5), it is 1.44"106 N, corresponding to 2~p0 = 
102 and 105 Pa. The partition scale over the coordinate scales in the figures is given in 
meters. 

Analysis of the results of the numerical calculations showed that for pressure dis- 
placement velocities near zero the film deflection r has a nearly axially symmetric shape 
in the case Q = 0. The axial symmetry of the deflection breaks down with increasing velo- 
city, but the symmetry relative to the coordinate axes is retained~ In this case the depth 
of the deflection is maximum under the load. Local elevations are formed in front and behind 
the load, extended in the directions perpendicular to the course of the load. There also 
exists an extended deflection under the load in the same direction. The deflection curvature 
is maximum in front of the load and behind it, and minimum in the direction perpendicular 
to the drawing. 

Local elevations also occur on both sides of the drawing. However, their height in- 
creases with load velocity substantially more slowly than the height subtended over the 
course. For v near v 0 the height of both elevations is less than 20% than the elevation 
height over the drawing. An increase in the ice thickness leads to a decrease, and an in- 
crease in the velocity v leads to an increase in the deflection depth and the formation of 
elevations over the drawing. The distance between the centers of the deflection base and 
the elevations over the drawing increases with ice thickness and decreases with v. 

The spatial distribution of perturbation amplitudes in the fluid at a fixed depth is 
qualitatively the same as on the ice-water surface, but the damping of perturbation with 
depth above the drawing occurs more slowly than under it. 
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The deflection topography variation under the effect of compression with fixed v is 
qualitatively the same as for the variation of load displacement velocity with Q = 0. The 
deflection depth and the elevation height at the drawing increase with compressing force 
and decrease with increasing tension. The distance between the centers of their bases varies 
in the opposite direction. For v > v 0 the symmetry of the film-fluid surface topography 
is retained only with respect to the pressure displacement drawing. The maximum deflection 
point is found now behind the load, being further removed from it with increasing v. The 
points of maximum deepening of deflection lines parallel to the drawing are also further 
removed in this case. The geometric locus of these points has a nearly hyperbolic distri- 
bution with a vertex on the drawing. The direction of deflection grooves makes with the 
drawing an angle near tan -I [(v/v0) 2 - 1] -I/2 

The wave perturbations in front and behind the deflection decay substantially more slow- 
ly with moving away from the load (approximately as I/R I/2) than in the case v < v 0. The 
leading slope of the deflection is steeper than the trailing one. In front of the load the 
wave is substantially shorter than behind the loading. The deflection depth and the ampli- 
tudes of wave perturbations decrease with increasing v for v > v 0. The wavelength decrease 
in front of the load and increase behind it. The rates of variation of wavelengths and amp- 
litudes behind the region of increasing v are substantially higher than in front of it. 

For low excess velocities of v beyond v 0 the wave amplitudes are approximately equal 
in front of and behind the load. As for v < v0, they decay monotonically along their crests. 
Further increase of v leads to the appearance of local extrema at the perturbation crests 
(depressions) in front of the load. The line joining the extrema in height (depth) is a 
branch of a hyperbola with a vertex at the maximum deflection point on the drawing. The 
ray direction of this branch depends on the velocity v. The larger v, the larger the angle 
formed by these rays with the direction of load motion. The deflection trough is extended 
in the wavy trail behind the pressure region, acquiring a weakly expressed hilly channel, 
i.e., the depth of the trough decreases nonmonotonically with distance from the drawing. 
The smooth illustration of the topography perturbation for this case is shown in Fig. 2 for 
v = 0.3~gH, h = 2 m, Q = 0. 

We note that if v exceeds some value, denoted by v I in [4, 5], then wave structures 
are also acquired by both trough boundaries in the wavy trail. This is seen from the topog- 
raphy in Fig. 3 for h = i under the same conditions as in Fig. 2. We note that this effect 
is obviously due to the contribution of longitudinal waves of the type of marine waves, ex- 
cited for v > v I [i, 3, 4]. 

For v > ~, the wave perturbations are insignificant behind the deflection in the wake. 
In particular, for H = 30 m, h = i m, v = 1.2/gH, Q = 0 (Fig. 4) the crest heights in front 
of and behind the deflection are 70 and i0 mm, respectively. Besides, the first crest in 
front of the deflection acquires a clearly expressed wavy nature. 

Analysis of the results of numerical calculations has also shown that a decrease in 
the film thickness for a fixed v value in each of the regions v 0 < v < vl, v I < v < /gH, 
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v > /~leads to an increase in the deflection depth and amplitudes of maximum wave perturba- 
tions. Besides, the wave crests in front of the load become more hilly. This becomes obvi- 
ous by comparing Figs. 2 and 3. Also possible is the appearance of substantial local eleva- 
tions on both sides of the drawing behind the deflection with velocities in the region v 0 < 
v < v I. The angle between the deflection trough and the drawing decreases behind the pres- 
sure region with decreasing film thickness. 

Uniform compression increases the maximum depth of the deflection. The angle between 
the direction of the deflection trough and the abscissa axis decreases with increasing com- 
pressing force. The elevation behind a deflection with increasing Q is extended along the 
drawing, and narrows down in the transverse direction. Its height increases substantially 
in this case, which is possibly a consequence of superposition of excess, longitudinal and 
transverse marine waves, occurring near the drawing behind the load [4] for compressing 
forces exceeding the quantity Q* obtained in [2]. The structure of the deflection trough 
and the distribution of perturbation amplitudes along the troughs vary qualitatively in front 
of the load with increasing compressing force in the same manner as with increasing load 
displacement velocity. The perturbation topography for Q = 1.5 Dv~l, h = 2 m, H = l0 s m, and 
v = 0.2/gH is illustrated in Fig. 5. 

The amplitudes of excess perturbations (in front of the load) decay with fluid depth 
more quickly than gravitational ones and those due to the deflection (behind the load). The 
damping of excess perturbations is enhanced with depth due to their decreasing length with 
increasing load displacement velocity, compressing force, and decreasing film thickness. 
This also leads to enhancement of different perturbation topographies in the fluid at a given 
depth and at the film-fluid surface. The point of maximum deviation from the unperturbed 
level at a fixed depth deviates more strongly from the load than the corresponding point 
of maximum film deflection~ The hilly nature of excess perturbation crests and of deflec- 
tion troughs are smoothed with increasing depth, in which case the points of maximum ampli- 
tude of excess perturbations are more removed from the plane of the drawing. 
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